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Abstract—This paper describes the theory of a transient method of measuring heat transfer rate to metal

substrates coated with an electrical insulator, using thin film resistance thermometers. This builds on the

already well-established system which uses semi-infinite insulating substrates. It is intended that the new

technique will have application in rotating turbine test rigs, since there is at present a lack of suitable

instrumentation which can be easily manufactured, and which does not interfere with the flow. The new

system described here shows that multi-layer substrate gauges can be used. This paper presents analyses
of layered gauges and gives sample predictions and calibrations.

1. INTRODUCTION

THE USE of thin film resistance thermometers on insu-
lating substrates for measuring heat transfer rates to
turbine blades in short duration transient cascade
facilities is well documented [1, 2]. Turbine blades are
machined from machinable glass ceramic (Corning
Macor) and the surface is readily instrumented with
thin film resistance thermometers. The depth to which
the heat penetrates into the insulator is small, so that
the substrate may be considered semi-infinite. Elec-
trical analogues [3], are used to obtain the heat trans-
fer rate from the surface temperature signal. The use
of machinable glass is, for structural reasons, limited
to stationary cascade facilities. There is however, a
necessity for instrumentation which can be utilized on
metal turbine blades in fully rotating turbine test rigs,
since there is a major gap between the data provided
by static cascade testing (which does not fully model
the situation of the rotor) and the rotating systems,
where the difficulties of instrumentation have severely
restricted the quality of measurements.

This paper describes the theory behind the use of
thin film resistance thermometers on multi-layered
substrates. This work is described in more detail in
ref. [9] and the practical applications are to be pub-
lished [10].

2. SEMI-INFINITE SUBSTRATES—
TYPE 1 GAUGE

Thin film gauges which operate on the semi-infinite
principle (Fig. 1), have been well described [1]. A small
constant current is passed through the film and the
changes of voltage across this thermometer are pro-
portional to the changes in surface temperature 7.
The governing equation (assuming that the effect of
the surface sensor is negligible) is the unsteady heat

conduction equation

oT_107

ox2 " o dt

(M

where o is the thermal diffusivity, with the boundary
condition

oT
gx=0=¢,= —k— on x=0

0x
which is solved to give the Laplace transform of the
surface heat transfer rate

G = (pcks) T, .

It is possible to compute ¢ from a digitally recorded
T signal, but the numerical error when digitizing the
film voltage waveform gives rise to noise on the recon-
structed ¢ signal [4], and so it is more usual to use a
lumped resistance capacitance transmission line a$ an
electrical analogue (Fig. 2) to convert the film voltage
into a current proportional to ¢ and to record this
current. For a continuous RC transmission line, the
governing equations are

ﬁ_ _(')v
Gx__cat
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qS
Thin film
‘ - thermometer

Fi1G. 1. Thin film gauge on semi-infinite layer.
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¢ specific heat capacity, capacitance/unit
length

gauge step calibration function
current

constant current through film
thermal conductivity

heat transfer rate

surface heat transfer rate
constant heat transfer rate
resistance per unit length
Laplace transform variable
Laplace transform

h(2)

[ ‘{Q;Q.Q.»‘O‘NN

NOMENCLATURE

7  temperature
T, surface temperature

t time

v, analogue output voltage
v voltage

vy initial film voltage

x  distance.

Greek symbols
o  temperature coefficient of resistance,
diffusivity
p  density.

oy _
ox? rca[

2
od cy’ 12~
1=\- R/
r

from which it can be seen that i is analogous to ¢ and
Vand T.

3. TWO-LAYER GAUGES

3.1. Semi-infinite backwall—type 2 gauge

The gauge has two layers (Fig. 3)
0 < x < a electrically insulating layer =1

a < x< oo metal substrate = 2.

The governing equations are

&1, 14T,
ax? " o, ot

for i=1,2 2)

with the boundary conditions

or, .
—k,ﬁ—qs on x=0
T,=T, on x=a
oT, T,
kl“ax—kz_‘ax on x=agq
oT.
R on Xx = 0.
ox

Taking Laplace transforms and solving for T, T,
gives

F o é(a 152 (1+0)exp {—(x—a)s/a)'?}+(1~0) exp {(x—a@)(s/x,) "} 3)
Tk (1+0) exp {a(s/a,)""*} — (1—0) exp { —a(s/a,)"*}
7 2 - 12 exp {(a—x)(s/a,)""*}
=— i 4
T2 = e 49\ (15 0) exp ats o) = (1= o) oxp {—a(s/) ™) @
For this model, the metal substrate is considered to be ~ where s
semi-infinite, and the thermal capacity of the surface o= <pzczkz /
sensor is again considered to be negligible. pc k)
+IS YV aAmplitier
Analogue 250K——-(RF)
- Volt)
1 pO
. | Output
Bias i 0.02uF
to set | |
film current :' I TO.OZ;L;l— R
+8V ) |
! Vottage  (Meyer circuit) | 15V
: output ]
L e e e e e — - Jd

Fi1G. 2. Electrical analogue circuit for obtaining heat transfer rate from measured surface temperature.
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1“ /Film

Insulating
layer

T N A A I NN NN
“Semi infinite”
metal layer

i

F1G. 3. Thin film gauge on two-layered composite comprising
electrically insulating layer on semi-infinite metal.

o]
'

If the heat flux is assumed to be constant, Q (a step
input at ¢ = 0), then

- _0

4qs s
Inverting equation (3) and putting x = 0, gives the
surface temperature

T(x=0,)=T,

2Q /2 < n 1/2
T, = Gk <(t/n) / +2n;A {(t/n) /

X exp <ﬂ> - a_”% erfe (na/(a.t)'“)}) ©)

ot
where
l—0o
BN E
This can be used later to predict the surface tem-
perature.

3.2. Finite backwall model—type 3 gauge
If the metal substrate is finite then the model has
two-layers (Fig. 4)
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aT, oT,
kl—a—kz—ax on x=90

oT

Z1=9 on x=5b

0x

Taking the Laplace transforms of the above equations
gives

47 -
S+ BT, =0, where f°>= -2

d
d&*T, ., .- a\’?
e +Ap°T, =0, A= ;2

" T, = A sin fx+ B cos fx
T, = D sin-ABx+ E cos ABx.

Using the‘Laplace transformed boundary conditions,
solving for 4, B, and inverting gives (from ref. [5])

1
Tl(x,t)=§-

N 1 _ Qe usin Abf sin fx+cos AbS cos fx ds
—iww  SP(k,sinaficos Abf+ Ak ,cos afi sin AbS)

where

,u=/1-3.

1

The singularities are given by the roots of
sB(k, sin aff cos Abf
+ Ak, cos af sin ABb) = 0 (simple poles)

—a<x<0 insulator i=1 and
0 < x <b metal substrate i=2. s=0 (double pole).
The equations to be solved are
2T 10T Writing p(s) as the numerator of the integral and
3 5 = o 6{' for i=1,2 g(s) as the denominator, the residue at each of the
* i simple poles f, is given by p(s,)/q’(s,) and the residue
with the boundary conditions at s = 0 is given by refs. [S, 6] to be
k o _ = Res(0) = ———[3p"(0)g" (0) — p(0)g"" (0
1oy = s on x=-—a es 3 "(0)) p'(0)g"(0)—p(0)g"" (0)].
T, =T, on x=0 Hence
X (u sin AbB, sin xf, +cos Abf, cos xf,)
T = Res(0)—2 =h .
(%, 1) = Res(0) QE, € " BX((ak, + A%bk,) cos ap, cos Jbf, — Mak, + bk ) sin af, sin ZbB,)

T [nsulutlng
tayer

F1G. 4. Thin film gauge on two-layered composite comprising
electrically insulating layer on finite metal layer.

The transcendental equation
k, sin aff cos Abf+ Ak, cos afi sin Afb =0

is solved to find the §, using a standard NAG [7]
library routine (CO5SAGF) which locates a simple zero
of a continuous function from a given starting value.
An iterative procedure is adopted to find successive
roots.
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3.3. Predicted surface temperature profiles

The surface temperatures for two typical physical
cases, quartz on nickel and Kapton on nickel, are
shown in Figs. 5 and 6, respectively, for a step in heat
transfer rate at the surface at 1 = 0, for the type 2
(two-layer semi-infinite) and type 3 (two-layer finite
backwall) gauge solutions.

Insulator Metal substrate
Fig. 5(a) 200 pm quartz 3 mm nickel (finite backwall)
Fig. 5(b) 200 pm quartz  semi-infinite nickel
Fig. 6(a) 75 pm Kapton 3 mm nickel (finite backwall)
Fig. 6(b) 75 ym Kapton semi-infinite nickel

The typical material properties used in these pre-
dictions are given in Table 1. The complete tem-
perature—time—distance surface for each case is shown
in Figs. 7 and 8, respectively. These are useful to
predict the range of times for which a two-layered
gauge with a finite backwall (type 3 gauge) can be
considered to behave as a two-layered gauge with
semi-infinite metal layer (type 2 gauge).

4. METHOD OF OBTAINING HEAT TRANSFER
RATE FROM MEASURED SURFACE
TEMPERATURE SIGNALS

The relationship between ¢, and T, for any system
is
4. = FO)T.. {6)
For the two-layered system (type 2 gauge), for
example, from equation (3) putting x = 0

ST (spicik) P\ (1—A exp {—2a(s/a))?}))"

(a)

— Finite
base
el )
2 ©
o Base
[
a
£
I
-~ b
[
[5)
2
e
2
w
| ] | | J
[¢) v0.08 v0.32 /072 V.28 J2
VTime (Vs)

F16. 5. Surface temperature signal from film subject to step
in heat transfer rate at the surface: (a) 200 um quartz on
3 mm nickel; (b) 200 4um quartz on semi-infinite nickel.
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FiG. 6. Surface temperature signal from film subject to step
in heat transfer rate at the surface: (a) 75 um Kapton on
3mm nickel; (b) 75 um Kapton on semi-infinite nickel.

Hence

(1—Aexp{—2a(s/x)""*})
(14 Aexp {—2a(sfx)'?})’

To measure surface heat transfer rates, a constant
current is passed through the thin film gauge, and the
change of voltage, v caused by a change in surface
temperature is processed by using an electrical ana-
logue (Fig. 2).

The film voltage is given by

F(s) = (picikys)"?

M

where « is the temperature coefficient of resistance of
the film. The voltage output from the analogue is
given by

v=uve0T

s Co s
KOk
where k, is the analogue calibration constant (Fig. 2)
assuming the analogue is ideal. Combining equations
(6)—(8) gives

8)

b, =

- k. F(s) _
s — LTO Wvu' (9)
For short times, F(s) = (p,c,ks)"? so
- k ﬁﬂ ;
qs = Dol (prciky )2 (10)
If the analogue output is a step, then
o1
b, =—
s
and the ¢, to give this step would be
- 1k
7, = — — F(s)s— 2. 11
do= s an

For short times, from equation (10)
- (plclkl)l/zka
g =—""_ """

SV

so g4(¢) is a step of height k,(p,c k)" /vox for small
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Table 1. Material properties used in predictions

Specific heat Thermal
Density capacity conductivity V(pck)
(kg m™?) (Gkg7'KY Wm~ 'K (Im-2s" 2K
Quartz 2200 755 1.425 1538
Kapton 1420 1090 0.155 490
Nickel 8900 450 84 18342

time. Define the gauge step calibration function A(7),
with Laplace transform

F(s)

HO = ek

(12)
then from equations (12) and (11) for a unit step of v,

- 14, /
qs(S)=&;;H(S)(P|C|k|)"Z 13)

SO

. 1k, 12
4,(0) = = —h(D)(pc.k) 7. (14)
o vy
The sampled analogue output signal, with Laplace
transform

I P
7, = —s"? T

a

can be considered to be a series of step functions such
that

v,(N1) = i a,u(Nt—nt) (15)

Temperature

Interface
200 pum /
<
7,
//////
o

F1G. 7(a). Temperature—distance time surface for step in

/ ;;ii);;;;;;;;”'
IIIIIIIII;

where u(z —1) is the delayed unit step function. Since
e ™ F(s) is the Laplace transform of f(z—1), where
F(s) is the Laplace transform of f(¢), the transform of
equation (15) is

—St,

Nooe
G, = n; @
where
t, =nt
and
a, =v,(nt)—v,(n—1)r. (16)
Then
- 1k, 1=
4= U*OH(S)(PnCIkl)'/Zva(S) an

so for i, a sum of the series of step functions

- 1k, . ;
56) =, SHEOek)? T g, (18)
0 n=1

e
77 iAo

heat transfer rate at the surface of 200 um quartz

on semi-infinite nickel base.
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Interface

FiG. 7(b). Temperature—distance—time surface for step in heat transfer rate at the surface of 200 um quartz
on 3 mm nickel base.

thus inverting equation (18) gives the sampled heat transfer signal can be computed. In
1k practice, only about 200 points per channel of v,(n7),
G(N7) = 5 U—"(p.c.kl)"Z are sampled, so we only need to know A(nt) at 200
0 . points.
x Y BN —n)yt(v,(nt)—v,(n~1)1) (19) For one-layer (type 1), semi-infinite gauges,
n=1 h(t) = u(r), the unit step.

so if h(nt) is known at N discrete points, then §,(N7), For two-layered, semi-infinite gauges (type 2

Temperature

|

Interface

75pm
b \

X

2
2
& time
2
=
=ose 20s
s - !
- o2 2 g
- > - o
~ o - :
- 2ol o= o
- Soseresates sozees
-~ = oot e o
- stsessezesiasss =
- L eoorese
ozs
- - Toosiiess
-~ -
; -
o Nickel - »

FIG. 8(a). Temperature—distance-time surface for step in heat transfer rate at the surface of 75 um Kapton
on semi-infinite nickel base.
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Fi1G. 8(b). Temperature—distance-time surface for step in heat transfer rate at the surface of 75 um Kapton
on 3 mm nickel base.

gauges) from equation (3)

(1—4exp {—2a(s/a,)"*})
(1+ A exp {—2a(s/a)""?})’

F(s) = (piciky) 22

Hence
_ 1 (1—Aexp {—2a(s/a,)"*})
HE = T dexp {=2a(s/a) ™))

so expanding the denominator gives

(20)

Y| -

H(s) = (1+2 i (=1 4™

m=1

X exp (—2ma(s/oz1)”2)> (21
and inverting this gives

h(t) = 142 i (— 1y 4™ exfe (ma/(a,£)""?).

m=1

(22

For multi-layered (type 4) gauges A(¢) is not deter-
mined explicitly.

5. CALIBRATION

It has been shown from the above that it is necessary
to determine A(¢) for a particular gauge in order to
obtain the heat transfer rate. The following shows
how this is possible for the various types of gauges.

5.1. Two-layered gauge (type 2)
It has been shown in equation (21) that A(¢) can
be explicitly calculated if the values of (p,c.k))"?

(p2¢5k5)'? and
12 _ a 1/2
a/(@)" = (p\ciky)
ki
are known.
For a step in heat transfer rate at the surface of a
two-layer semi-infinite gauge

g=

“llQ

From equation (5)

2 e
T, = ‘“_—(plclg])l/z <(t/7r)1/2+2n§:l A" {(l/n)l/z

X €Xp (%) - &n{/z_z erfc (na/(a,t)’“)}).

T, can also be written as

P 12
Ts=2Q<npxC|k|) +

x i A2t i erfe (na/(x,£)?)  (23)

n=1

20
(Plclkl)”2

where
, 2™ 2
ierfc (z) = - f (t—2)e " dt.

For large ¢ (from ref. [8])

l 2,2
erfc [(—a%ﬁ] > <1+ %) —(na/(x,0)"?.
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So

t 12 40
T,~2 +
Q<P16|k|n> (plclkl)l/z

© 2 2 AVE
x ZIA" {ﬁ%—lﬁ—(m/a{”)+2<g) } 4

n=

and
kil A
A" = .
2=y
Then since
lim Y A"(2n’a?/(a,(n)"?) -0
1o =
fort— oo

{ 2 aQ< P|C|k1>
T.,=2 +—=| 1= . (25
Q(chzkﬂf) k, P20k, 25)

This is effectively the metal alone with an offset to
account for the presence of the insulator.

For short time, ¢t — 0, and ¢'/* exp (—n2a*/o,1) - 0
$0

t 172
monthJ (26)
which is the insulator alone.

If the two-layered substrate is subject to a step in
heat transfer rate then, for a short time, the insulator
is seen. Figure 9 shows the predicted surface tem-
peratures for metal alone, insulator alone and insu-
lator coated metal, plotted against ¢'/2. The point of
intersection of the straight lines in equations (25) and
(26) is given by

(= T 1/21 pacska\"?
I 2 ki \picik,

X {(plclkl)l/z +(P2"2kz)”2} (27

where (p,c,k)"? is known from the standard air—
glycerine test [1]. The ratio of the slope of the line

yA

[ B 3
3

2

° -

@

a

g B 2
3

2

5 L

%)

| ] ] | ]
v/ Time (/s)

F1G. 9. Representative surface temperatures for step in heat
transfer rate at the surface of : (1) insulator alone ; (2) metal
alone ; (3) insulator coated metal.
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given by equation (26) to that given by equation (25)
is

slope 1 (pyerky\"?
slope 2~ \p.c )k,

hence (p,c.k,)"? is known. Then a/k, is calculated
from the intersection point ¢, obtained by fitting
straight lines for ¢ < t, and ¢ > ¢, on a T-,/t plot. As
has been shown, this is the required constant in the
equations for obtaining the calibration function A(?).

5.2. Multi-layered (type 4) gauges

For a multi-layered (type 4) gauge, the following
technique can be used to determine A(¢).

An air—glycerine test is used, for ¢ < ¢,, to determine
(p1c 1k )"* for the top insulating layer. If a step in heat
transfer rate is applied to the gauge, then the first part
of the curve, for t < t,, can be scaled, since

- ¢ 1
I.= F(s) ™~ sF(s)

(28)

and for short times, ¢ < ¢t,, F(s) = (p,c,k,5)"? so
s 3/2

Ty~ ——rr——
(plclkl)l/z

or

‘ 112
(plclkln)> .

Hence for 0 <t <¢,, a parabola can be fitted
through the measured curve and the result scaled.
Then from equation (12)

T.() = 2(

F(s)s— 3?2
H(s) = ———
O =Gk
and from equation (28), for a unit step in ¢,
1
F(s) = T 29)
SO
s 512
1O~ ek T o
Thus
- 1
H(S)[(plclkls)l/sz]=E (€2))
and putting
y(s) = (plclkls)l/sz (32)
gives
1
H@y©) = 5. (33)
From the convolution theorem
J hy(u—1t) du = t. (34)
0
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For t < t,, h(¢) = 1, hence
y(s) = (picik,8) " (pic k) 2s™32 (35)

so () = 1 for t « t,. Since y(¢) is known for a small

time, numerical techniques can be used to compute

y(t) (by inverting equation (32)) without the usual

difficulties. Alternatively an analogue can be used to

compute y(¢) from the measured surface temperature.
The discrete form of equation (34) is

i h(nt)y(N—n)t = Nt
or

h(NT)=N-— 3 h(nt)y((N—n)1)

s0 h(N7) can be computed step by step.

6. CONCLUSIONS

It has been shown that it is possible to use thin film
gauges on two- or multi-layered substrates to obtain
surface heat transfer measurements. Electrical ana-
logues are still used as in the semi-infinite one-layer
substrate case, and a heat transfer signal can be
obtained by numerical methods from a sampled ana-
logue output voltage signal. For high-speed heat
transfer measurements, the usual single substrate
semi-inifinite signal processing based on the insulating
layer only can be used to determine the fluctuating
components of ¢(¢), over short timescales during
which only the top layer plays a part in the heat
conduction processes.
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The practical implementation of this multi-layer
gauge scheme has been demonstrated in ref. [9] and
the gauges are now being used to measure heat trans-
fer rates on metal nozzle guide vanes.
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LA THEORIE DES SONDES THERMIQUES PERFECTIONNEES A PLUSIEURS
COUCHES MINCES

Résumé—On décrit la théorie d’une méthode transitoire de mesure des flux de chaleur sur des substrats
métalliques recouverts par un isolant électrique, en utilisant des thermométres a résistance en film mince.
Ceci repose sur le systéme bien établi des substrats isolants semi-infinis. La nouvelle technique a une
application dans les turbines car il y a actuellement un manque d’instrument convenable facile a construire
et qui n’interfére pas avec 'écoulement. Le nouveau systéme décrit montre que I’on peut utiliser les sondes
multicouches. On en fait ’analyse et on donne une estimation de dimensionnement et d’étalonnage.

DIE THEORIE VIELSCHICHTIGER DUNNFILMSENSOREN BEI
WARMEUBERGANGSMESSUNGEN

Zusammenfassung-—Dieser Aufsatz beschreibt die Theorie einer instationiren Methode fiir die Messung
des Wirmeiibergangs an eine Metallschicht, welche mit einem elektrischen Isolator bedeckt ist. Dabei wird
ein Diinnfilm-Widerstandsthermometer verwendet. Die Grundlage ist das bereits eingerichtete System, das
halbunendliche Isolator-Unterschichten benutzt. Die Absicht ist, daB man diese Technik an den Testan-
lagen fiir Turbinen benutzen kann, denn es fehlt zur Zeit ein passender MeBfiihler, der leicht angebaut
werden kann und der die Strémung nicht stort. Das neue System, das hier geschildert wird, zeigt, daB man
Vielschichtpriifkdpfe benutzen kann. In diesem Aufsatz werden Analysen von Diinnschicht-MeBgeriiten
vorgenommen und Beschreibungen und Kalibrierungen einiger Muster mitgeteilt.
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TEOPUSA MHOT'OCJIOMHBIX TOHKOIUTEHOUYHBIX JATYUKOB TEIJIONIEPEHOCA

Annoramus—C ACHOb30BAHMEM TEOPHUH IEPEXOMHBIX NMPOLECCOB MOCTPOCH METON M3MEPEHHS MHTEH-
CHBHOCTH TEIUIONEPEHOCA K METAJUIMYECKAM MOIOXKAM, MOKPHITEBIM JJIEKTPOH30IATOPOM, B BHE TOH-
KOIUIEHOYHBIX TEPMOMETPOB CONpPOTHBJICHHA. PaccMaTpmBacTcs XOpOWIO M3BECTHAA CHCTEMa, Tie
NPHMEHSACTCS MOJYOTPaHHYEHHAs H3OMMpYIOllad NoAnoxka. HM3-3a oTCyTCTBHA B HAacTosllee BpeMs
NOAXOIALUIMX AATYHKOB, NPOCTHIX B M3rOTOBJIEHHH M HE OKa3bIBAIOIUMX CYLIECTBEHHOTO BO3AEHCTBHS Ha
TeYeHHe, MPEANOIAraeTCA HOBYIO METOANKY HCIIONB30BATh NPH NPOBEACHHH IKCIEPUMEHTOB B YCTAHOB-
kax Bpawaronmxcs Typ6un. HoBas cucrema noaTsepamiia BOZMOXHOCTb HCIOJB30OBAHHA JAaTYHKOB C
MHOTOCJIOAHOA NOANOXKOH. [laH aHA/IH3 CJIOXKHBIX JaTYHKOB M MPUBEAEHB! IPUMEPHI PACUETOB U TapH-
POBKH.



